Acceleration and Transport to the Ring Current During a Small Storm

L.M. Kistler,

C.G. Mouikis, A. Menz, H.E. Spence, D.J. Mitchell, M. Gkioulidou, L.J. Lanzerotti, R.M. Skoug, H.O. Funsten, B.A. Larsen, S.G. Claudepierre, J.L. Roeder, J.F. Fennell, J.B. Blake

Motivation

- It is known that the O+/H+ ratio in the ring current increases significantly during storms. It is an open question exactly how this occurs.
- We will address this during a time when Cluster measures the composition change in the plasma sheet, while the Van Allen Probes measure the changes in the ring current during a storm main phase.
- Questions
 - How does the near-Earth plasma sheet composition (ie. the source of the ring current) change as the storm develops?
 - Is adiabatic inward transport of the near-earth plasma sheet sufficient to explain the inner magnetosphere composition?
 - Is there any evidence for an "inner source" of O+ (ie. directly injected from the ionosphere to the inner magnetosphere, or non-adiabatically accelerated in the inner magnetosphere)?

What can we learn from Energy Spectra?

- Features due to
 - Which regions are accessible from the tail
 - At low energies, follow equipotentials eastward drift.
 - Middle range has direct access, but details depend on MLT and L
 - At high energies, closed westward drift
 - Transition energies vary with convection field.
 - How long is the drift time to a location?
 - Long drift times due to ExB and grad B drifts almost cancelling lead to minima in the spectra.
- The drifts are a function of Energy/charge so all species should show the same features at the same E/q. However sources and losses can be different.

What can we learn from Energy Spectra?

Examples from AMPTE/CHEM, L=4-5

Van Allen Probes Example

j vs E Inbound Pass, ~1:00 MLT

- Combining HOPE (0.02-60 keV) and RBSPICE (~10-600 keV) data.
- Sharp open/closed drift path boundary, decreasing in energy with decreasing L-value
- Energy/flux increase with decreasing L for the "closed drift path" particles

Van Allen Probes Example

- Clear adiabatic inward transport f vs mu is conserved
- Sharp open/closed drift path boundary, decreasing in mu with decreasing L-value
- Closed drift path region also shows adiabatic transport

Cluster/RBSB, Aug 4-5, 2013

- Cluster Spacecraft close to the equator, inbound , in the midnight plasma sheet during the storm main phase.
- RBSP apogee on the dusk side.
- Spacecraft both close to midnight at ~00:00 UT on Aug 5th.

Cross-calibration – RBSP/Cluster Conjunction 2013-12-16 11:00 H+

Cross-calibration – RBSP/Cluster Conjunction O+

2013-12-16 11:00

Hope multiplied by 3

- The two Van Allen Probe spacecraft are in phase - I will only show B from now on.
- Van Allen Probes spectra change significantly at storm main phase. Both H+ and O+ increase.
- Cluster observes a large increase in O+ in the storm main phase.
- Does the composition at Cluster explain the spectra at Probe B?

Conclusions

- Source: The change in the source population in the near-earth plasma sheet during the storm is clearly observed
 - The near-earth plasma sheet shows a non-adiabatic increase in the O+, a greater increase than is observed for H+.
- Transport: As Dst decreases, strong convection brings both H+ and O+ into the inner magnetosphere (L=3.5). The transport is clearly adiabatic (f vs mu conserved) and shows a sharp open/closed drift path boundary. As convection weakens the new population will be on closed drift paths.
- Inner Source: For this storm, there is no evidence for any source other than the near-earth plasma sheet entering the inner magnetosphere.
- Future work: Perform same analysis on larger storms.